

HCIA-Datacom

Duration: 10 Days

Prerequisites:

- Be familiar with PC operations.
- Basic understanding of IT technologies and network knowledge

Course Objectives:

After completing the training, you will be able to:

- Understand the definition of data communication and the capability model of data communication engineers.
- Understand the network reference model and the entire data communication process.
- Be familiar with the VRP system and be able to perform basic operations.
- Understand IPv4 address protocol and related concepts
- Understand the forwarding principles of Layer 3 devices such as routers and Layer 3 switches.
- Understand the concept of routing and use static route or OSPF to build a Layer 3 network.
- Understand basic Ethernet concepts and describe the functions and working principles of Layer 2 switching devices.
- Be familiar with common Ethernet protocols, such as VLAN, Spanning Tree Protocol, link aggregation and stacking.
- Configure ACLs and AAA to provide basic security solutions for the network.
- Be familiar with the NAT protocol and master the NAT configuration in different scenarios.
- Master the configuration of common services on enterprise networks, such as DHCP, FTP and Telnet.
- Understand basic WLAN concepts and complete basic configurations of small or medium-sized WLAN networks.
- Understand basic WAN concepts and WAN solutions such as MPLS and SR.
- Have general knowledge of basic concepts of enterprise network management.
- Be familiar with traditional network management and SDN-based network management solutions.
- Have a good command of IPv6 protocols and be able to build smallscale IPv6 networks.
- Have a good command of the campus network construction process. Be able to independently construct small-sized campus networks.
- Understand the basic concepts of SDN and programming automation and master the basics of Python.

Intended Audience:

- Engineers who need to master basic datacom knowledge and capabilities
- Those who have capabilities in small and medium-sized network planning, deployment implementation, and O&M optimization

Course Outline:

1. Data Communication and Network Basics

- 1.1 Data Communication Network Basics
 - Basic Concepts of Data Communication
 - Data Transfer Process
 - Network Devices and Basic Functions
 - Network Type and Topology Type
 - Network Engineering
 - Network Engineers
 Network Reference Model
- 1.2 Network Reference ModelWhat is Data and Data Transfer
 - Common Standard Protocols
 - Layered Model Concept
 - Application Layer and Related Protocols
 - Transport Layer and Related Protocols
 - Network Layer and Related Protocols
 - Data link Layer and Related Protocols
 - Physical Layer and Related ProtocolsData Transfer, Encapsulation
 - Data Transfer, Encapsulation and Decapsulation

1.3 Huawei VRP Basics

- Common Network Devices
- VRP Basics
- CLI Command Views
- $\bullet \hspace{1.5cm} \mbox{Basic Commands}$ and Function Keys of the CLI

2. Constructing an Interconnected IP Network

- 2.1 Network Layer Protocol and IP Addressing
 - Network Layer Protocol
 - Concept, Classification, and Special IP Addresses of IPv4
 - IP Network and IP Subnet Calculation
 - IP Network Address Planning
- 2.2 IP Routing Basics
 - Basic Working Principles of Routers
 - Routing Table Concepts
 - Routing and Forwarding Features
 - Static Route Configuration
- 2.3 OSPF Basics
 - Basic Features of OSPF
 - OSPF Application Scenarios
 Westing Dringing of OSPF
 - Working Principle of OSPF
 - Basic OSPF configurations

3. Constructing an Ethernet Switching Network

- 3.1 Ethernet Switching Basics
 - Basic Concepts of Ethernet
 - Concept of MAC Address
 - Working Process and Principles of Layer 2 Switches
 - Composition and Formation of a MAC Address Table

- 3.2 VLAN Principles and Configuration
 - Background of VLAN
 - Basic Concepts and Principles of VLAN
 - VLAN Data Communication Process on a Layer
 Network
 - Basic VLAN Configuration
- 3.3 Spanning Tree Protocol
 - Background of STP
 - Basic Concepts and Working Principles of STP
 - Basic Concepts of RSTP and Improvements Compared with STP
 - Basic STP Configuration
 - Other Layer 2 Loop Elimination Technologies
- 3.4 Ethernet Link Aggregation and Switch Stacking
 - Basic Concepts of Link Aggregation
 - Working Principles of Manual Link Aggregation
 - Working Principles and Features of Link Aggregation in LACP Mode
 - Basic Concepts of iStack and CSS
- 3.5 Implements Communication Between VLANs.
 - Working Principles of Sub-interfaces
 - Working Mechanism of Layer 3 Switches
 - Sub-interface Configuration
 - VLANIF Configuration

4. Network Security and Network Access Basics

- 4.1 ACL Principles and Configuration
 - Basic Principles and Functions of ACLs
 - Basic Structure and Matching Order of ACL Rules
 - Usage of Wildcard mask
- Basic ACL Configuration
- 4.2 AAA Principles and Configuration
 - Basic Principles and Application Scenarios of AAA
 - Basic Configuration of the Local AAA
- 4.3 NAT Basics
 - Background of NAT
 - NAT Classification and Technical Principles
 - NAT Configuration in Different Scenarios

5. Network Services and Applications

- 5.1 Network Services and Applications
 - Principles of TFTP, FTP, DHCP, and HTTP
 - Configuration of FTP and DHCP

6. WLAN Basics

- 6.1 WLAN Overview
 - Basic Concepts of WLAN and History of 802.11
 Protocol suite
 - WI AN devices
 - WLAN Networking Mode
 - WLAN Working Process
 - Basic WLAN Configuration

7. WAN Basics

- 7.1 WAN Technology Basics
 - WAN Technology BasicsBasic WAN Concepts
 - Common WAN Technologies
 - Working Principles of PPP and PPPoE
 - Configuring PPP and PPPoEBasic Concepts of MPLS/SR

COURSE OUTLINE

8. Network Management and O&M

- 8.1 Network Management and O&M
 - Basic Concepts of the NMS and O&M
 - Common NMS and O&M Methods and Tools
 - Working Principle of SNMP
 - SDN-based NMS and O&M Solution

9. IPv6 Basics

- 9.1 IPv6 Basics
 - Comparison Between IPv6 and IPv4
 - Basic Concepts of IPv6
 - Format and Principle of the IPv6 Packet Header
 - IPv6 Address Format and Address Type
 - IPv6 Address Configuration Method and Procedure
 - Static and Dynamic IPv6 Address Configuration
 - IPv6 Static Route Configuration

10. SDN and Automation Basics

- 10.1 SDN and NFV Basics
 - Basic SDN Concepts
 - Huawei SDN Products and Solutions
 - Basic NFV Concepts
 - Huawei NFV Products and Solutions
- 10.2 Network Programming and Automation
 - Traditional Network O&M Status Analysis
 - Implementation of Network Automation
 - Programming Language
 - Python Coding Specifications
 - Implement Basic Automatic O&M Using Python telnetlib.

11. Typical Campus Network Architectures and Practices

- 11.1 Typical Networking Architecture and Cases
 - Campus Network Architecture
 - Campus Network Lifecycle
 - Campus Network Construction Cases
 - Campus Network Construction Practice